本文最后更新于39 天前,其中的信息可能已经过时,如有错误请发送邮件到3021714482@qq.com
同余方程
$a \equiv b (\mod c)$ -> $(a – b) = t \cdot c$
扩展欧几里得求逆元
费马小定理求逆元
快速幂
ll fastPow(ll a, ll b) {
ll ret = 1;
while(b) {
if(b & 1) ret = ret * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ret;
}
组合数学
求组合数
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MAXN = 3e7 + 5;
ll Tex, jc[MAXN], inv_jc[MAXN], n, MOD;
void exgcd(ll a, ll b, ll &x, ll &y) {
if(b == 0) {
x = 1, y = 0;
return;
}
exgcd(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * x;
}
ll fastPow(ll a, ll b) {
ll ret = 1;
while(b) {
if(b & 1) ret = ret * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ret;
}
void AC() {
ll m, n;
cin >> m >> n;
cout << jc[m] * inv_jc[n] % MOD * inv_jc[m - n] % MOD << "\n";
}
int main() {
MOD = 1e9 + 7;
n = MAXN - 5;
jc[0] = inv_jc[0] = 1;
for(int i = 1; i <= n; i ++) {
jc[i] = jc[i - 1] * i % MOD;
}
inv_jc[n] = fastPow(jc[n], MOD - 2);
for(int i = n - 1; i >= 1; i --) {
inv_jc[i] = inv_jc[i + 1] * (i + 1) % MOD;
}
cin >> Tex;
while(Tex --) AC();
return 0;
}